Exercice 2

On définit une suite $(a_n)_{n\geq 0}$ par : $a_0>0$ et, pour tout entier $n\in\mathbb{N}$, $a_{n+1}=1-e^{-a_n}$.

- a) Montrer que, pour tout réel x strictement positif, $0 < 1 e^{-x} < x$.
- b) Etudier la convergence de la suite $(a_n)_{n\geq 0}$.
- c) On considère la série de terme général $(-1)^n a_n$. Est-elle convergente ? Justifier.
- d) Déterminer un équivalent de $a_n a_{n+1}$ en fonction de a_n . En déduire la nature de la série de terme général a_n^2 .

Pour la question suivante, on admettra le théorème suivant (théorème de Cesaro) :

Soit $(u_n)_{n\geq 0}$ une suite de réels. Si la suite $(u_n)_{n\geq 0}$ converge et a pour limite ℓ , la suite $(v_n)_{n\geq 0}$ définie par : $\forall n\geq 0$, $v_n=\frac{u_0+u_1+\ldots+u_n}{n+1}$ est convergente et a pour limite ℓ .

e) Etudier la convergence de la suite de terme général $\frac{1}{a_{n+1}} - \frac{1}{a_n}$. En déduire un équivalent de a_n lorsque $n \to +\infty$.

Corrigé:

a) On a d'une part par croissance stricte de la fonction exponentielle :

$$\forall x \in]0, +\infty[: e^x > 1, \quad e^{-x} < 1, \quad 0 < 1 - e^{-x}$$

Posons d'autre part pour $x \in [0, +\infty[: g(x) = 1 - e^{-x} - x]$

Alors pour
$$x \in [0, +\infty[: g'(x) = e^{-x} - 1 \le 0]$$

g' ne s'annulant qu'en 0, g est strictement décroissante sur $[0, +\infty[$. Ainsi pour $x \in]0, +\infty[$:

Soit:

$$1 - e^{-x} - x < 0$$

b) Introduisons pour $n \in \mathbb{N}$ la proposition : $P_n : "0 < a_{n+1} < a_n"$

et montrons par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$ après avoir posé :

 $h(x) = 1 - e^{-x}$, fonction strictement croissante sur $[0, +\infty]$

Initialisation : pour n = 0

$$a_1 = 1 - e^{-a_0} < a_0$$

Donc P_0 est vraie

<u>Hérédité</u>: Supposons P_n vraie pour $n \in \mathbb{N}$ et montrons que P_{n+1} est vraie.

On a:

$$0 < a_{n+1} < a_n$$

Donc:

$$h(0) < h(a_{n+1}) < h(a_n)$$

D'où:

$$0 < a_{n+2} < a_{n+1}$$

Ainsi P_{n+1} est vraie.

- c) La série de terme général $(-1)^n$ a_n est alternée, son terme général tendant en valeur absolue vers 0 en décroissant. Elle est donc convergente.
- d) Le développement limité de e^t en 0 à l'ordre 2 s'écrit :

$$e^t = 1 + t + \frac{1}{2}t^2 + o(t^2)$$

En faisant t = -x cela donne par composition :

$$e^{-x} = 1 - x + \frac{1}{2} x^2 + o(x^2)$$

D'où un équivalent en 0 :

$$x - (1 - e^{-x}) \sim \frac{1}{2} x^2$$

Ainsi

$$a_n - (1 - e^{-a_n}) \sim \frac{1}{2} a_n^2$$

Soit

$$a_n - a_{n+1} \sim \frac{1}{2} a_n^2$$

La série de terme général a_n^2 est donc de même nature que la série de terme général $2(a_n-a_{n+1})$ qui est télescopique donc convergente.

e) Notons d'abord qu'en 0 :

$$1 - e^{-x} \sim x$$

Donc:

$$a_{n+1} \sim a_n$$

Ainsi :

$$\frac{1}{a_{n+1}} - \frac{1}{a_n} = \frac{a_n - a_{n+1}}{a_n a_{n+1}} \sim \frac{\frac{1}{2} a_n^2}{a_n^2} = \frac{1}{2}$$

En utilisant le théorème de Césaro, on en déduit :

$$\lim_{n\to\infty}\frac{\sum_{k=0}^n\left(\frac{1}{a_{k+1}}-\frac{1}{a_k}\right)}{n+1}=\frac{1}{2}$$

Or:

$$\sum_{k=0}^{n} \left(\frac{1}{a_{k+1}} - \frac{1}{a_k} \right) = \frac{1}{a_{n+1}} - \frac{1}{a_0} \sim \frac{1}{a_{n+1}}$$

Donc:

$$\frac{1}{(n+1)\,a_{n+1}} \sim \frac{1}{2}$$

D'où:

$$n a_n \sim 2$$

$$a_n \sim \frac{2}{n}$$