Dérivation

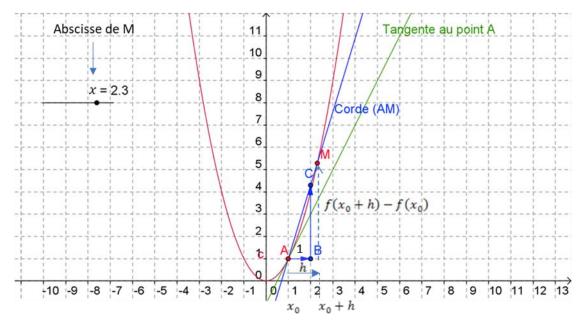
1) Approche graphique du concept sur un exemple :

Considérons un point A de la représentation graphique de la fonction carrée $f:x\to x^2$. Notons son abscisse x_0 et considérons un autre point M de la courbe d'abscisse $x=x_0+h$ distinct de A ce qui revient à dire que h est non nul . La droite (AM) a alors un coefficient directeur représenté sur la figure ci-dessous par la différence entre l'ordonnée du point C et celle du point C. Ce coefficient directeur n'est autre que le taux d'accroissement de la fonction entre les abscisses x_0 et x_0+h :

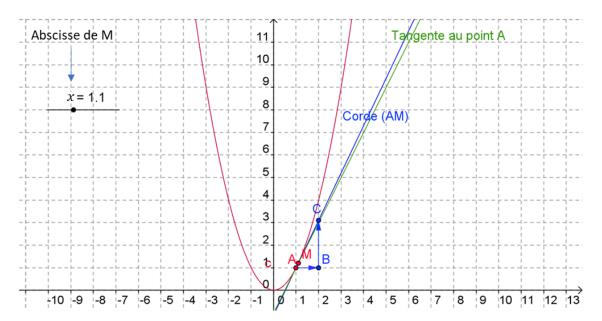
$$\frac{f(x_0+h)-f(x_0)}{h}$$

Or, si on fait tendre le point M vers le point A, ce qui revient à faire tendre h vers 0, un logiciel graphique comme geogebra par exemple, montre que la corde se rapproche jusqu'à pratiquement se confondre, d'une droite oblique appelée tangente à la courbe au point A. Le coefficient directeur de cette droite « limite » n'est donc que le nombre dérivé de f en x_0

Voilà ce que cela donne pour $x_0 = 1$ et $h = x - x_0 = 2.3 - 1 = 1.3$



Et pour une valeur de h=1,1-1=0,1 plus petite, on ne peut pratiquement plus distinguer à l'œil coefficient directeur de corde et coefficient directeur de tangente.

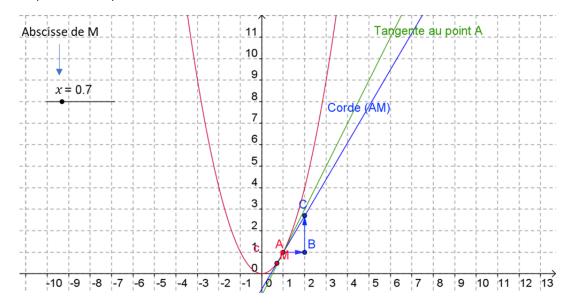


Dans les deux exemples présentés, l'abscisse du point M est plus grande que celle de A. Ce que l'on voit en la faisant tendre par valeur supérieure vers 1 se traduit par la définition du nombre dérivé à droite de f en 1 :

$$f'_d(1) = \lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0^+} \frac{f(1 + h) - f(1)}{h}$$

Ce nombre est appelé **nombre dérivé à droite de la fonction** f à l'abscisse 1 et s'interprète géométriquement comme le **coefficient directeur de la demi tangente** à droite à la courbe au point A (demi droite [A, C) sur les graphiques précédents).

Or , l'abscisse du point M peut être également prise inférieure à celle de A comme sur ce graphique où h=0.7-1=-0.3 :



Un phénomène analogue s'observe et conduit à définir un nombre dérivé à gauche de la fonction f à l'abscisse 1 qui s'interprète géométriquement comme le coefficient directeur de la demi tangente à gauche à la courbe au point A:

$$f'_g(1) = \lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0^-} \frac{f(1 + h) - f(1)}{h}$$

Or ces deux nombres dérivés à droite et à gauche ont la même valeur. On dit alors que la fonction est dérivable en 1 (les deux demi tangentes forment par union une tangente) et on écrit plus simplement :

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

Sur le graphique ce nombre peut être mesuré comme étant la valeur algébrique $\overline{BC'}=y_C,-y_B=3-1=2$, où C' est le point de la tangente de même abscisse que le point C. Ainsi, graphiquement on obtient :

$$f'(1) = 2$$

2) Approche du concept par le calcul sur un exemple :

Reprenons l'exemple de la fonction carrée et transformons le taux d'accroissement de f entre l'abscisse 1 et l'abscisse x=1+h:

$$\frac{f(x) - f(1)}{x - 1} = \frac{f(1+h) - f(1)}{h} = \frac{(1+h)^2 - 1^2}{h} = \frac{[(1+h) - 1][(1+h) + 1]}{h}$$
$$= \frac{h(2+h)}{h} = 2 + h$$

En faisant tendre h vers 0, on retrouve par le calcul que ce taux d'accroissement tend vers 2. On écrit pour cela :

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} 2 + h = 2$$

Le calcul fait à l'abscisse 1 peut se faire à n'importe quelle abscisse x_0 , en notant :

$$\frac{f(x_0+h)-f(x_0)}{h} = \frac{(x_0+h)^2 - x_0^2}{h} = \frac{[(x_0+h)-x_0][(x_0+h)+x_0]}{h}$$
$$= \frac{h(2x_0+h)}{h} = 2x_0+h$$

Ce qui conduit à

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} 2x_0 + h = 2x_0$$

On dit alors que la fonction carrée est dérivable en tout point x de \mathbb{R} et on peut donc ainsi définir sa fonction dérivée :

$$f'(x) = \lim_{\substack{h \to 0 \\ x \text{ fixé}}} \frac{f(x+h) - f(x)}{h} = 2 x$$

On précisera également le domaine où ce nombre dérivé existe en écrivant :

$$D_{f'} = \mathbb{R}$$

Une autre écriture très employée en mathématique est l'écriture « différentielle » où on note :

$$df = f(x+h) - f(x)$$

ce qui signifie différence « infinitésimale » (il faut penser pouvant être rendue infiniment petite) de valeurs de f entre deux abscisses et :

$$dx = (x+h) - x = h$$

D'où l'autre notation, retrouvée en calcul intégral :

$$f'(x) = \frac{df}{dx}$$

3) Fonction dérivée des fonctions de référence :

Les propriétés algébriques des fonctions de référence conduisent aux résultats suivants :

Fonction <i>f</i>	D_f	Fonction dérivée f'	D_f ,
constante	R	0	\mathbb{R}
x	\mathbb{R}	1	\mathbb{R}
χ^2	\mathbb{R}	2 x	\mathbb{R}
x^3	\mathbb{R}	$3x^2$	\mathbb{R}
1	\mathbb{R}^*	1	\mathbb{R}^*
$\frac{\overline{x}}{x}$		$-\frac{1}{x^2}$	
\sqrt{x}	[0,+∞[1]0, +∞[
		$2\sqrt{x}$	
sin(x)	\mathbb{R}	cos(x)	\mathbb{R}
cos(x)	\mathbb{R}	-sin(x)	\mathbb{R}
e^x	\mathbb{R}	e^x	\mathbb{R}
Ln(x)]0,+∞[1]0,+∞[
		$\frac{\overline{x}}{x}$	

Remarque : pour aller plus loin, on peut noter une formule qui permet de retrouver rapidement les 5 premières :

ļ	x^a	\mathbb{R} ou $[0, +\infty[$	$a x^{a-1}$	\mathbb{R} ou $]0,+\infty[$

où a est un réel quelconque non nul.

En effet:

$$\frac{1}{x} = x^{-1}$$

$$\sqrt{x} = x^{\frac{1}{2}} = x^{0,5}$$

4) Propriétés de la dérivation

Somme, différence:

Si deux fonctions u et v sont dérivables en un point a alors la fonction somme f=u+v est dérivable en a et :

$$f'(a) = u'(a) + v'(a)$$

La fonction différence g = u - v est dérivable en a et :

$$g'(a) = u'(a) - v'(a)$$

Exemple :
$$u(x) = \sqrt{x}$$
, $v(x) = x^2 + 1$, $f(x) = \sqrt{x} + x^2 + 1$

u est définie sur l'intervalle $[0, +\infty[$ mais dérivable seulement en tout point a de $]0, +\infty[$ et :

$$u'(x) = \frac{1}{2\sqrt{x}}$$

u est définie et dérivable en tout point de $\mathbb R$ et :

$$v'(x) = 2x$$

On en déduit que f est dérivable en tout point de $]0, +\infty[$ et :

$$f'(x) = \frac{1}{2\sqrt{x}} + 2x$$

Ceci s'illustre sur le graphique en x=1 par le fait que le coefficient directeur f'(1) de la tangente en C à la courbe de f est la somme des coefficients directeurs u'(1) et v'(1) des tangentes en A à la courbe de f0 et en f1 à la courbe de f2.



Produit par une constante:

Si une fonction u est dérivable en un point a et si c est un nombre réel constant alors la fonction produit f=c u est dérivable en a et :

$$f'(a) = c u'(a)$$

De même, si c n'est pas nulle, la fonction quotient $g=rac{u}{c}$ est dérivable en a et :

$$g'(a) = \frac{u'(a)}{c}$$

Exemple: u(x) = sin(x), c = 3, f(x) = 3 sin(x)

u est définie et dérivable en tout point de $\mathbb R$ et :

$$u'(x) = cos(x)$$

On en déduit que f est dérivable en tout point de $\mathbb R$ et :

$$f'(x) = 3\cos(x)$$

Produit:

Si deux fonctions u et v sont dérivables en un point a alors la fonction produit f=u v est dérivable en a et :

$$f'(a) = u'(a) v(a) + u(a) v'(a)$$

Exemple : $u(x) = x^2$, $v(x) = e^x$, $f(x) = x^2 e^x$

u et v sont définies et dérivables en tout point de $\mathbb R$ et :

$$u'(x) = 2 x$$
, $v'(x) = e^x$

On en déduit que f est dérivable en tout point de $\mathbb R$ et :

$$f'(x) = 2 x e^x + x^2 e^x = (x^2 + 2 x) e^x$$

Quotient:

Si deux fonctions u et v sont dérivables en un point a et v(a) non nul, alors la fonction quotient $f = \frac{u}{v}$ est dérivable en a et :

$$f'(a) = \frac{u'(a) \ v(a) - v'(a) \ u(a)}{(v(a))^2}$$

Exemple: $u(x) = x^2 + 1$, v(x) = x - 2, $f(x) = \frac{x^2 + 1}{x - 2}$

u et v sont définies et dérivables en tout point de $\mathbb R$ privé de 2 et :

$$u'(x) = 2x$$
, $v'(x) = 1$

On en déduit que f est dérivable en tout point de $\mathbb R$ privé de 2 et :

$$f'(x) = \frac{2 x (x-2) - 1 (x^2 + 1)}{(x-2)^2} = \frac{2 x^2 - 4 x - x^2 - 1}{(x-2)^2} = \frac{x^2 - 4 x - 1}{(x-2)^2}$$

Composée:

Si une fonction u est dérivable en un point a et si une fonction f est dérivable au point u(a) alors la fonction composée $g=f\circ u$ est dérivable en a et :

$$g'(a) = f'(u(a)) u'(a)$$

Exemple: u(x) = 2x + 1, $f(x) = e^x$, $g(x) = f(u(x)) = e^{2x+1}$

u et f sont définies et dérivables en tout point de $\mathbb R$ et :

$$u'(x) = 2$$
, $f'(x) = e^x$

On en déduit que g est dérivable en tout point de $\mathbb R$ et :

$$g'(x) = 2 e^{2x+1}$$

Cette propriété permet d'obtenir les dérivées des composées des fonctions de référence avec une fonction u dérivable sur un intervalle I et prenant toutes ses valeurs dans le domaine de dérivabilité de la fonction de référence que l'on compose avec. Cela donne ce tableau :

Fonction f	Fonction dérivée f'
$u(x)^2$	2 u(x) u'(x)
$u(x)^3$	$3 u(x)^2 u'(x)$
1	u'(x)
$\overline{u(x)}$	$-\frac{1}{u(x)^2}$
$\sqrt{u(x)}$	u'(x)
	$2\sqrt{u(x)}$
sin(u(x))	$u'(x) \cos(u(x))$
cos(u(x))	$-u'(x) \sin(u(x))$
$e^{u(x)}$	$u'(x) e^{u(x)}$
Ln(u(x))	u'(x)
	$\overline{u(x)}$

Remarque : pour aller plus loin, on peut noter une formule qui permet de retrouver rapidement les 4 premières :

	•
$u(x)^a$	$a u(x)^{a-1} u'(x)$

où a est un réel quelconque non nul.

Exemple:

$$f(x) = Ln(x^2 + 3x + 1)$$

On pose:

$$u(x) = x^2 + 3x + 1$$

On calcule:

$$u'(x) = 2x + 3$$

On en déduit :

$$f'(x) = \frac{u'(x)}{u(x)} = \frac{2x+3}{x^2+3x+1}$$

5) Equation de la tangente en un point de la courbe d'une fonction

Soit une fonction dérivable en un point A d'abscisse x_A et d'ordonnée $y_A = f(x_A)$. Sa courbe représentative dans un repère orthogonal admet en ce point une tangente T_A d'équation :

$$y = a (x - x_{\Delta}) + y_{\Delta}$$

où a est le coefficient directeur de cette tangente qui est par définition $f'(x_A)$.

L'équation de cette tangente est donc :

$$y = f'(x_A)(x - x_A) + f(x_A)$$

Exemple:

Donner l'équation de la tangente à la courbe de la fonction précédente définie par $f(x) = Ln(x^2 + 3x + 1)$ au point A d'abscisse 2.

On calcule la fonction dérivée :

$$f'(x) = \frac{2x+3}{x^2+3x+1}$$

Et on l'évalue en x = 2:

$$f'(2) = \frac{2 \times 2 + 3}{2^2 + 3 \times 2 + 1} = \frac{7}{11}$$

On évalue f en x = 2:

$$f(2) = Ln(2^2 + 3 \times 2 + 1) = Ln(11)$$

On écrit l'équation réduite de la tangente en x = 2:

$$y = f'(2)(x-2) + f(2)$$

On remplace par les valeurs calculées :

$$y = \frac{7}{11} (x - 2) + Ln(11)$$

On développe :

$$y = \frac{7}{11} x - \frac{14}{11} + Ln(11)$$

On obtient ainsi la forme réduite y = a x + b où :

$$a = \frac{7}{11}$$
, $b = -\frac{14}{11} + Ln(11)$

En pratique, on peut donner des valeurs approchées avec un nombre réduit de chiffres significatifs (par exemple 2) en utilisant une calculette :

$$a \approx 0.64$$
, $b \approx 1.1$

Ce qui donnera pour l'équation réduite approchée :

$$v = 0.64 x - 1.1$$

La fonction qui lui correspond à savoir : g(x) = 0.64 x - 1.1 est appelée approximation affine de f en x = 2.